Kepler의 제 3 법칙에 따르면 행성의 궤도 기간 (P)의 제곱은 태양 (R)의 평균 거리의 큐브에 비례합니다. 수학적으로, 그것은 다음과 같이 표현 될 수 있습니다.
$$ p^2 =kr^3 $$
어디:
-P는 지구상의 행성의 궤도 시대입니다.
-R은 천문학 단위에서 태양에서 행성의 평균 거리는 (AU)입니다.
-K는 태양계의 모든 행성에 동일한 상수입니다.
이 법은 태양에서 더 멀리 떨어진 행성이 태양에 가까운 행성에 비해 궤도 기간이 길다는 것을 의미합니다. 이것은 우리 태양계의 다른 행성의 궤도 기간을 비교하여 관찰 할 수 있습니다.
- 예를 들어, 태양과 가장 가까운 행성 인 머큐리는 궤도 기간이 약 0.24 지구 (88 일)입니다.
- 태양에서 세 번째 행성 인 지구는 궤도 기간이 약 1 년 (365.25 지구 일)입니다.
- 태양의 다섯 번째 행성 인 목성은 약 12 년 (4333 일)의 궤도 기간을 가지고 있습니다.
- 태양에서 가장 먼 행성 인 해왕성은 약 165 년의 지구 (60190 지구 일)입니다.
Kepler의 제 3 법칙에 의해 묘사 된 궤도 기간과 태양과의 거리의 관계는 태양계에서 행성의 움직임을 지배하는 기본 원칙입니다.