상대 론적 질량의 개념
고전 물리학에서 질량은 물체의 일정한 특성으로 간주됩니다. 그러나 아인슈타인의 특수 상대성 이론 이론은 질량이 일정하지 않지만 속도에 따라 증가한다는 것을 보여줍니다 . 물체가 빛의 속도에 접근함에 따라 이러한 증가는 중요해집니다.
공식
입자의 상대 론적 질량 (m)은 다음과 같이 주어진다.
m =m ₀ / √ (1 -v² / c²)
어디:
* m (은 나머지 질량 (휴식시 질량)입니다.
* V는 입자의 속도입니다
* C는 빛의 속도입니다
도전
상대 론적 질량 (m)이 나머지 질량 (m₀)의 두 배인 속도 (v)를 찾고 싶습니다. 그래서 우리는 m =2m₀을 설정하고 v를 해결합니다.
2m =m₀ / √ (1 -v² / c²)
v 에 대한 해결
1. 양쪽을 m₀ :2 =1 / √로 나눕니다 (1 -v² / c²).
2. 제곱 양쪽 :4 =1 / (1 -v² / c²)
3. 양쪽의 역수를 가져 가라 :1/4 =1 -v²/c².
4. 재 배열 :v²/c² =3/4
5. 양쪽의 제곱근을 취하십시오 :v/c =√ (3/4)
6. V :V =C * √ (3/4) ≈ 0.866C에 대한 해결
결론
입자는 약 86.6%로 이동해야합니다. 상대 론적 질량이 두 배로
중요한 참고 : 입자가 빛의 속도에 도달 할 수는 없습니다 (C). 이것은 입자가 빛의 속도에 접근함에 따라 상대 론적 질량이 무한대에 접근하여 무한한 양의 에너지가 필요하기 때문입니다.